Maximum path sum I

By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.

   3  
  7 4  
 2 4 6  
8 5 9 3

That is, 3 + 7 + 4 + 9 = 23.

Find the maximum total from top to bottom of the triangle below:

                75
               95 64
              17 47 82
             18 35 87 10
            20 04 82 47 65
           19 01 23 75 03 34
          88 02 77 73 07 63 67
         99 65 04 28 06 16 70 92
        41 41 26 56 83 40 80 70 33
       41 48 72 33 47 32 37 16 94 29
      53 71 44 65 25 43 91 52 97 51 14
     70 11 33 28 77 73 17 78 39 68 17 57
    91 71 52 38 17 14 91 43 58 50 27 29 48
  63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23

NOTE: As there are only 16384 routes, it is possible to solve this problem by trying every route. However, Problem 67, is the same challenge with a triangle containing one-hundred rows; it cannot be solved by brute force, and requires a clever method! ;o)


Idea

Each sub-path on the maximum path is also itself the maximum path of the sub-triangle.

So from bottom to top, build maximum path for each number, and eventually will get the root maximum path.


In [1]:
triangle = """75
95 64
17 47 82
18 35 87 10
20 04 82 47 65
19 01 23 75 03 34
88 02 77 73 07 63 67
99 65 04 28 06 16 70 92
41 41 26 56 83 40 80 70 33
41 48 72 33 47 32 37 16 94 29
53 71 44 65 25 43 91 52 97 51 14
70 11 33 28 77 73 17 78 39 68 17 57
91 71 52 38 17 14 91 43 58 50 27 29 48
63 66 04 68 89 53 67 30 73 16 69 87 40 31
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23"""
triangle = [list(map(int, r.split(' '))) for r in triangle.splitlines()]
In [2]:
sub_triangle_max = triangle[:]
In [3]:
def solve():
    for r in range(len(triangle)-2, -1, -1):
        for c in range(r+1):
            sub_triangle_max[r][c] += max(sub_triangle_max[r+1][c], sub_triangle_max[r+1][c+1])
    return sub_triangle_max[0][0]
In [4]:
solve()
Out[4]:
1074