A unit fraction contains 1 in the numerator. The decimal representation of the unit fractions with denominators 2 to 10 are given:
1/2 = 0.5
1/3 = 0.(3)
1/4 = 0.25
1/5 = 0.2
1/6 = 0.1(6)
1/7 = 0.(142857)
1/8 = 0.125
1/9 = 0.(1)
1/10 = 0.1
Where 0.1(6) means 0.166666..., and has a 1-digit recurring cycle. It can be seen that 1/7 has a 6-digit recurring cycle.
Find the value of d < 1000 for which 1/d contains the longest recurring cycle in its decimal fraction part.
A problem of primary math calculation: 'calculate decimal for fraction'
Record remainder of each division, and check if there is a repeatted pattern.
def get_remainders(d):
remainders = [1]
new_remiander = (remainders[-1] * 10) % d
while new_remiander:
remainders.append(new_remiander)
if new_remiander in remainders[:-1]:
break
new_remiander = (remainders[-1] * 10) % d
return remainders
get_remainders(2)
get_remainders(3)
get_remainders(4)
get_remainders(6)
get_remainders(7)
def get_recurring_interval(remainders):
r = remainders[-1]
for i, rr in enumerate(reversed(remainders[:-1]), 1):
if rr == r:
return i
return 0
get_recurring_interval(get_remainders(3))
get_recurring_interval(get_remainders(4))
get_recurring_interval(get_remainders(7))
def solve(bound):
return max(range(1, bound), key=lambda n: get_recurring_interval(get_remainders(n)))
solve(10)
solve(1000)